We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Hyperspectral Analysis?

By Paul Scott
Updated: Jan 31, 2024
Views: 7,656
Share

Hyperspectral analysis is a measurement process that relies on the identification and visual representation of reflected radiation from a broad range of the electromagnetic spectrum. This range of reflected light includes otherwise invisible wavelength groups, such as infrared and ultraviolet radiation. The basis of hyperspectral analysis is the physical characteristic of all materials to reflect light from these spectrum ranges in a very specific, measurable manner. These unique electromagnetic signatures are read by hyperspectral sensors and visually depicted on a display or read out. These read outs or images are structured as layered three-dimensional "cubes" that allow very accurate compositional analysis of the scanned material.

Every material reflects visible light in a unique, identifiable way. The manner in which this reflected light is seen or collected gives all objects their specific colors and surface textures. It is not just visible light that is reflected in a specific fashion, though. Light from areas of the electromagnetic spectrum that are invisible to the human eye are also reflected in very specific ways by different materials. Reflected light from these spectrum slices, particularly ultraviolet and infrared light, may be read by specialist sensors and stacked or layered to create wonderfully graphic and accurate representations of the composition of materials.

These hyperspectral sensors and the unique three-dimensional images they create are at the heart of hyperspectral analysis. The hyperspectral "signatures" for most materials are known, and this allows analysts to accurately identify the exact material make up of any scanned material. The technology makes light work of pursuits such as mineral exploration, which was previously arduous and time consuming. Hyperspectral sensors mounted in aircraft can create incredibly detailed multi-dimensional models of large tracts of land in a short period. These models consist of layers representing a specific reflected wavelength and providing a broad selection of material identification.

The technology has many uses outside the obvious geology and mineralogy applications. For example, the agricultural industry can benefit from hyperspectral analysis, as the images generated can indicate nutrient and water levels in crop stands. The presence of disease causing animal proteins in livestock feeds can also be detected using hyperspectral imaging. In this way, the imaging assists in avoiding conditions such as mad cow disease.

The military and law enforcement arenas also see considerable use of hyperspectral analysis. Hyperspectral images can help investigators identify recently excavated graves or buried artifacts, for instance. The same functionality allows for the identification of subterranean emplacements in military applications as well. Hyperspectral imaging also allows military personal to track troop movements and differentiate between camouflage paint and living vegetation. This technology also been used extensively in humanitarian projects to identify old minefields and weapons caches.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wise-geek.com/what-is-hyperspectral-analysis.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.