We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is the Connection between Neural Networks and Fuzzy Logic?

By Ray Hawk
Updated: Feb 24, 2024
Views: 6,355
Share

Neural networks and fuzzy logic are both usually software systems that are designed to recognize patterns in data or events and simulate natural human reactions and decision-making processes. Whereas traditional computational models utilize discrete calculations for output from the onset of turning on the system, neural networks and fuzzy logic require a period of training or learning in order to produce meaningful results. Conceptually, the antithesis to neural networks and fuzzy logic in advanced computer systems is the application of expert systems, which are preset data stores or knowledge bases that are compilations of previously established understanding by a variety of experts in a field.

Both the inherent advantage and flaw in adaptive systems that employ neural networks and fuzzy logic is their predictive ability. They are non-linear statistical data modeling tools, which means that they may arrive at different conclusions to the same problem depending on the path taken to analyze the problem. Where an expert system based on standard programming constructs would decide if an individual were considered tall based on a clear cutoff point, say 6 feet (1.83 meters) or greater defines tall, where 5 feet 11 inches (1.8 meters) does not, neural networks and fuzzy logic make the decision based on analysis of supporting data, the number of individuals in a group and each one's height, how average heights for sub-groups within the group affect the overall perception of what is tall, and so on. This ability in humans is referred to as intuition, or the nature of looking at the world in a non-linear way and accounting for exceptions to the rule in making decisions.

Other terms used for neural networks and fuzzy logic systems include case-based reasoning, genetic algorithms, studies in chaos theory as it applies to software, and artificial intelligence, in general. The two systems tend to differ in their approach to solving subjective problems. Neural networks are a direct attempt to model the way that neurons function in the human brain, through a growth cycle of a artificial neural network that analyzes problems as it encounters them. Fuzzy logic, on the other hand, is a software construct that attempts to code for analysis of all the gray areas in the natural world, mathematically beforehand, and goes beyond binary 0/1 Boolean logic to include partial truths that are weighed against each other to arrive at a conclusion. This mimics the spectrum of value judgments that human beings continually make when a simple yes or no response to conditions is inadequate.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wise-geek.com/what-is-the-connection-between-neural-networks-and-fuzzy-logic.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.