We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is the Poynting Vector?

By H.R. Childress
Updated: Jan 24, 2024
Views: 13,126
Share

The Poynting vector is an important equation in physics. It describes the amount of energy per unit of area that is delivered by an electromagnetic field. Like any vector, the Poynting vector has both magnitude and direction.

Electromagnetic fields are a combination of electrical and magnetic fields. Any electrical device that is powered on emits the electromagnetic waves that compose electromagnetic fields. Everyday examples of devices that produce these fields include lamps, televisions, and cell phones.

Electric fields are produced by electrical voltages. An electrical device does not have to be turned on to produce an electric field, it only has to be plugged in. The device receives voltage from an outlet whenever it is plugged in, and this produces this type of field.

Magnetic fields, on the other hand, are only produced when an electrical device is turned on. These are produced by flowing electrical current. When a device is switched on, the current begins to flow and the magnetic and electric fields combine to form an electromagnetic field.

In its simplest form, the Poynting vector is written as S = E x B. All the variables in the equation are vector quantities, as indicated by the bold font. The S is the Poynting vector, the E is the electric field, and the B is the magnetic field.

Electric and magnetic fields are measured in terms of their energy density, which may also be referred to as intensity. The electric and magnetic fields are perpendicular to each other in an electromagnetic wave. This means that the magnitude of the electromagnetic field's energy is simply the magnitude of the electric field's energy density, multiplied by the magnitude of the magnetic field's density.

For practical applications, the basic equation must often be divided by a constant called μ0 (pronounced "mu naught"). This constant represents the permeability of free space. It is equal to 1.2566 x 10-6 Webers per Ampere per meter. Some other, equivalent units are sometimes used as well: Newtons per square Ampere or Henries per meter.

Theoretical physics commonly uses an alternative metric system called cgs, which means that it applies yet another form of the Poynting vector. The cgs system has standard units of centimeters, grams, and seconds, instead of the SI metric system's standard units of meters, kilograms, and seconds. The Poynting vector for theoretical physics is written as S = (c/4π)*E x B, where c stands for the speed of light.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Related Articles

Discussion Comments
Share
https://www.wise-geek.com/what-is-the-poynting-vector.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.