We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is the Temperature Coefficient?

By Alex Terris
Updated: Feb 27, 2024
Views: 10,409
References
Share

The temperature coefficient of a material describes how much a certain property changes when the temperature increases or decreases by 1 Kelvin (equivalent to 1° Celsius). Some common properties that vary with temperature include electrical resistance and elasticity. Linear changes in a material’s properties make it straightforward to calculate a temperature coefficient, but the calculations become more difficult if the change in a property isn’t linear. There are a number of practical applications for materials that change with temperature, especially in electronics, which is why the study of temperature coefficients is important.

When a substance is heated or cooled, its properties can change. The resistance of an object, for example, can increase or decrease depending on its temperature. Other properties, such as the elasticity of a material, also can vary depending on temperature. Substances with properties related to temperature are useful for a variety of different applications, so scientists need to be able to accurately judge exactly what changes will occur to a particular type of material.

The temperature coefficient is a way for scientists to numerically describe the change in a material’s properties depending on the temperature. In other words, the temperature coefficient is how much a property changes when the temperature is changed by 1 Kelvin. The Kelvin scale is an alternative measure of temperature with a different starting point than the Celsius scale, but a change of 1 Kelvin is the equivalent of 1° Celsius.

How a material changes with temperature depends on a variety of factors. Some materials, for example, have a resistance to electricity that changes linearly with temperature. This means that, if the temperature doubles, then the resistance also doubles. It is much easier to calculate a temperature coefficient if the material varies linearly with temperature.

If the variation with temperature isn’t linear, then the temperature coefficient is more difficult to calculate. In this situation, scientists usually try to discover a variety of temperature coefficients that can be used in various temperature ranges. Even so, it’s not always possible to calculate a useful temperature coefficient.

An example of a practical application that’s possible because of a material’s known temperature coefficient is temperature-dependent resistors. These are used in a number of electric circuits and allow an engineer to change the way a circuit behaves depending on the external temperature. Without being able to predict how a material reacts to changes in temperature, this would not be possible.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources

Editors' Picks

Discussion Comments
Share
https://www.wise-geek.com/what-is-the-temperature-coefficient.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.